S0049-3848(14)00284-9

Original Article

Brassinosteroids Application Responses in Fruit Crops – A Review

Year: 2021 | Month: June | Volume 14 | Issue 2

References (176)

1.Aghdam, M.S. and Mohammadkhani, N. 2014. Enhancement of chilling stress tolerance of tomato fruit by post-harvest brassinolide treatment. Food Biol. Technol., 7: 909–914.

View at Google Scholar

2.Ahammed, G.J., Li, X., Liu, A. and Chen, S. 2020. Brassinosteroids in Plant Tolerance to Abiotic Stress. J. Plant Growth Regul., 39: 1451–1464.

View at Google Scholar

3.Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C. and Tiburcio, A.F. 2010. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta., 23: 1237-1249.

View at Google Scholar

4.Alferez, F., Vincent, C. and Vashisth, T. 2019. Update on Brassinosteroids for HLB Management. Citrus Industry News. https://citrusindustry.net/2019/06/19/update-onbrassinosteroids- for-hlb-management

View at Google Scholar

5.Ali, B., Hasan, S.A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q. and Ahmad, A. 2008. A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ. Exp. Bot., 62: 153–159.

View at Google Scholar

6.Anjum, N.A., Sofo, A., Scopa, A., Roychoudhury, A., Gill, S.S., Iqbal, M., Lukatkin, A.S., Pereira, E., Duarte, A.C. and Ahmad, I. 2014. Lipids and proteins – major targets of oxidative modifications in abiotic stressed plants. Environ. Sci. Pollut. Res., DOI: 10.1007/s11356-014-3917-1.

View at Google Scholar

7.Anjum, N.A., Umar, S. and Ahmad, A. 2012. Oxidative Stress in Plants: Causes, Consequences and Tolerance. New Delhi: IK International Publishing House.

View at Google Scholar

8.Anjum, N.A., Umar, S. and Chan, M.T. 2010. Ascorbate- Glutathione Pathway and Stress Tolerance in Plants. Dordrecht: Springer.

View at Google Scholar

9.Azpeitia, A., Chan, J.L., Saenz, L. and Oropeza, C. 2003. Effect of 22(S), 23(S) homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. J. Hortic. Sci. Biotechnol., 78: 591–596.

View at Google Scholar

10.Bai, M.Y., Shang, J.X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T.P. and Wang, Z.Y. 2012. Brassinosteroid, gibberellin and hytochrome impinge on a common transcription module in Arabidopsis. Nat. Cell Biol., 14: 810–817.

View at Google Scholar

11.Bajguz, A. 2011. Brassinosteroids – Occurance and Chemical Structure in Plants. In: Brassinosteroids: Aclass of Plant Hormones. Eds. Hayat S and Ahmad A. Springer Science+ Business Media, pp. 1-27.

View at Google Scholar

12.Bajguz, A. and Hayat, S. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem., 47: 1–8.

View at Google Scholar

13.Bangerth, K.F. 2009. Floral induction in mature, perennial angiosperm fruit trees: similarities and discrepancies with annual-biennial plants and the involvement of plant hormones. Scientia Horticulturae, 122: 153-163.

View at Google Scholar

14.Bao, F., Shen, J., Brady, S.R., Muday, G.K., Asami, T. and Yang, Z. 2004. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol., 134: 1624–1631.

View at Google Scholar

15.Bechtold, U. and Field, B. 2018. Molecular mechanisms controlling plant growth during abiotic stress. J. Exp. Bot., 69: 2753-2758.

View at Google Scholar

16.Behnamnia, M., Kalantari, K. and Rezanejad, F. 2009. Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. Gen. Appl. Plant Physiol., 35: 22-34

View at Google Scholar

17.Bergstrand, K.J.I. 2017. Methods for growth regulation of greenhouse produced ornamental pot-and bedding plants–a current review. Folia Horticulturae, 29(1): 63-74.

View at Google Scholar

18.Bhat, Z.A., Reddy, Y.N., Srihari, D., Bhat, J.A., Rashid, R. and Rather, J.A. 2011. New generation growth regulators—brassinosteroids and CPPU improve bunch and berry characteristics in ‘Tas-A-Ganesh’ grape. Int. J. Fruit Sci., 11: 309–315.

View at Google Scholar

19.Ç?g, S. 2007. The effects of epibrassinolide on senescence in wheat leaves. Biotechnology and Biotechnology Equipment, 21: 63-65.

View at Google Scholar

20.Canales, E., Coll, Y., Hernández, I., Portieles, R., García, M.R., López, Y., Aranguren, M., Alonso, E., Delgado, R., Lui, M. and Batista, L. 2016. Candidatus Liberibacter asiaticus’, causal agent of citrus Huanglongbing, is reduced by treatment with brassinosteroids. PLoS ONE, 11:e0146223.

View at Google Scholar

21.Cano-Delgado, A., Yin, Y., Yu, C., Vafeados, D., Mora-Garcia, S., Cheng, J.C., Nam, K.H., Li, J. and Chory, J. 2004. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation. In: Arabidopsis, 131: 5341–5351.

View at Google Scholar

22.Caño-Delgado, A., Yin, Y., Yu, C., Vafeados, D., Mora-García, S., Cheng, J.C., Nam, K.H., Li, J. and Chory, J. 2004. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis”. Development, 131 (21): 5341–51.

View at Google Scholar

23.Chai, Y.M., Zhang, Q., Tian, L., Li, C.L., Xing, Y., Qin, L. and Shen, Y.Y. 2013. Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul., 69: 63–69.

View at Google Scholar

24.Chaiwanon, J. and Wang, Z.Y. 2015. Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr. Biol., 25: 1031–1042.

View at Google Scholar

25.Champa, W.H., Gill, M.I.S., Mahajan, B.V.C., Arora, N.K. and Bedi, S. 2015. Brassinosteroids improve quality of table grapes (Vitis vinifera L.) cv. Flame Seedless. Trop. Agric. Res., 26: 368–379.

View at Google Scholar

26.Choudhury, S., Islam, N., Sarkar, M.D. and Ali, M.A. 2013. Growth and yield of summer tomato as influenced by plant growth regulators. Int. J. Sustain. Agric., 5: 25-28.

View at Google Scholar

27.Clouse, S.D. 1997. Molecular genetic analysis of brassinosteroid action. Physiol. Plant, 100: 702-709.

View at Google Scholar

28.Clouse, S.D. 2008. The molecular intersection of brassinosteroid regulated growth and flowering in Arabidopsis. Proc. Natl. Acad. Sci. USA, 105: 7345–7346.

View at Google Scholar

29.Clouse, S.D. 2011. Brassinosteroids. In: The Arabidopsis Book 9: e0151. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3268510.

View at Google Scholar

30.Clouse, S.D. and Feldmann, K.A. 1999. Molecular genetics of brassinosteroid action, In: A Sakurai, T Yokota, SD Clouse, eds, Brassinosteroids: Steroidal Plant Hormones, Springer, Tokyo, pp. 163-190.

View at Google Scholar

31.Clouse, S.D., Langford, M. and McMorris, T.C. 1996. A brassinosteroid in-sensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol., 111: 671–678.

View at Google Scholar

32.Clouse, S.D., Langford, M. and McMorris, T.C. 1996. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol., 111: 671–678.

View at Google Scholar

33.Clouse, S.D. and Sasse, J.M. 1998. Brassinosteroids: Essential Regulators of Plant Growth and Development. Annual Rev. Plant Physio. Plant Mol. Biol., 49: 427–451.

View at Google Scholar

34.Cortes, P.A., Terrazas, T., León, T.C. and Larqué-Saavedra, A. 2003. Brassinosteroids effects on the precocity and yield of cactus pear. Sci. Hortic., 97: 65–73.

View at Google Scholar

35.Cosgrove, D.J. 1997. Relaxation in a high-stress environment: The molecular basis of extensible cell walls and enlargement. Plant Cell, 9: 1031-1041.

View at Google Scholar

36.Dejonghe, W., Mishev, K. and Russinova, E. 2014. The brassinosteroid chemical toolbox. Curr. Opin. Plant Biol., 22: 48–55.

View at Google Scholar

37.Dhaubhadel, S., Browning, K.S., Gallie, D.R. and Krishna, P. 2002. Brassinosteroid functions to protect the translational machinery and heat?shock protein synthesis following thermal stress. The Plant J., 29(6): 681-691.

View at Google Scholar

38.Dhaubhadel, S., Chaudhary, S., Dobinson, K.F. and Krishna, P. 1999. Treatment with 24?epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol. Biol., 29: 333– 342.

View at Google Scholar

39.Ding, W.M. and Zhao, Y.J. 1995. Effect of epiBR on activity of peroxidase and soluble protein content of cucumber cotyledon. Acta Phytophysiol. Sin., 21: 259–264.

View at Google Scholar

40.Domagalska, M.A., Schomburg, F.M., Amasino, R.M., Vierstra, R.D., Nagy, F. and Davis, S.J. 2007. Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Dev., 134: 2841–2850.

View at Google Scholar

41.El-Mashad, A. and Mohamed, H. 2012. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 249: 625–635.

View at Google Scholar

42.Eremina, M., Unterholzner, S.J. and Rathnayake, A.I. 2016. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc. Natl. Acad. Sci. USA, 113: E5982–E5991.

View at Google Scholar

43.Fàbregas, N., Lozano-Elena, F., Blasco-Escámez, D., Tohge, T., Martínez-Andújar, C., Albacete, A., Osorio, S., Bustamante, M., Riechmann, J.L., Nomura, T., Yokota, T., Conesa, A., Alfocea, F.P., Fernie, A.R. and Cano-Delgado, A.I. 2018. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat. Commun., 9: 4680.

View at Google Scholar

44.Fahad, S., Hussain, S., Saud, S., Khan, F., Hassan, S., Nasim, W., Arif, M., Wang, F. and Huang, J. 2016. Exogenously applied plant growth regulators affect heat stressed rice pollens. J. Agro. Crop Sci., 202: 139-150.

View at Google Scholar

45.Fariduddin, Q., Yusuf, M., Ahmad, I. and Ahmad, A. 2014. Brassinosteroids and their role in response of plants to abiotic stresses. Biol. Plant, 58: 9–17.

View at Google Scholar

46.Feng, W., Lindner, H., Robbins, N.E. and Dinneny, J.R. 2016. Growing out of stress: the role of cell- and organ-scale growth control in plant water-stress responses. Plant Cell, 28: 1769-1782.

View at Google Scholar

47.Fujioka, S. and Sakurai, A. 1997. Biosynthesis and metabolism of brassinosteroids”. Physiologia Plantarum., 100(3): 710–15.

View at Google Scholar

48.Gill, S.S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48: 909–930.

View at Google Scholar

49.Gomes, M.D.M.A., Campostrini, E., Leal, N.R., Viana, A.P., Ferraz, T.M., doNascimento Siqueira, L., Rosa, R.C.C., Netto, A.T., Nunez-Vázquez, M. and Zullo, M.A.T. 2006. Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passiflora edulis f. flavicarpa). Sci. Hortic., 110: 235–240.

View at Google Scholar

50.Gomes, M.D.M.D.A., Torres Netto, A., Campostrini, E., Bressan-Smith, R., Zullo, M.A.T., Ferraz, T.M., Siqueira, L.D.N., Leal, N.R. and NúñezVázquez, M. 2013. Brassinosteroid analogue affects the senescence in two papaya genotypes submitted to drought stress. Theor. Exp. Plant Physiol., 25: 186–195.

View at Google Scholar

51.Gomes, M.M.A. 2011. Physiological effects related to brassinosteroid application in plants. In: Hayat S and Ahmad A (eds). Brassinosteroids: a Class of Plant Hormone, 1st Ed. Dordrecht, Heidelberg, London, New York: Springer, pp. 193-242.

View at Google Scholar

52.Gomes, M.M.A., Ferraz, T.M., Netto, A.T., Rosa, R.C.C., Campostrini, E., Leal, N.R., Zullo, M.A.T. and Nunez-Vazquez, M. 2003. Efeitos da aplicação de brassinosteróidesnastrocasgasosas e fluorescência da clorofilaemmaracujazeiroamarelo submetido à deficiênciahí drica. Braz. J. Plant Physiol., 15: 348–352.

View at Google Scholar

53.Gomes, M.M.A., Netto, A.T., Campostrini, E., Bressan-Smith, R., Zullo, M.A.T., Ferraz, T.M., Siqueira, L.N., Leal, N.R. and Núñez-Vázquez, M. 2013. Brassinosteroid analogue affects senescence in two papaya genotypes submitted to drought. Theor. Expt. Physiol., 25(3): 186-195

View at Google Scholar

54.González-García, M.P., Vilarrasa-Blasi, J., Zhiponova, M., Divo, F., MoraGarcía, S., Russinova, E. and Caño-Delgado, A.I. 2011. Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Dev., 138: 849–859.

View at Google Scholar

55.Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N., Worley, J.F., Warthen, J.D., Steffens, G.L., Flippen- Anderson, J.L. and Cook, J.C. 1979. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281: 216–217.

View at Google Scholar

56.Guan, M. and Roddick, J.G. 1988. Epibrassinolide-inhibition of development of excised, adventitious and intact roots of tomato (Lycopersicon esculentum): Comparison with the effects of steroidal estrogens. Physiol. Plant, 74: 720-726.

View at Google Scholar

57.Guo, H., Li, L., Aluru, M., Aluru, S. and Yin, Y. 2013. Mechanisms and networks for brassinosteroid regulated gene expression. Curr. Opin. Plant Biol., 16: 545–553.

View at Google Scholar

58.Gupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K. and Singh, V. 2015. Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture. J. Microb. Biochem. Technol., 7: 096- 102.

View at Google Scholar

59.Hacham, Y., Holland, N., Butterfield, C., Ubeda-Tomas, S., Bennett, M.J., Chory, J. and Savaldi-Goldstein, S. 2011. Brassinosteroid perception in the epidermis controls root meristem size. Dev., 138: 839–848.

View at Google Scholar

60.Han, J., Tian, S.P., Meng, X.H. and Ding, Z.S. 2006. Response of physiologic metabolism and cell structures in mango fruit to exogenous methyl salicylate under low temperature stress. Physiol. Plant, 128: 125–133.

View at Google Scholar

61.Hewitt, F.R., Hough, T., O’Neill, P., Sasse, J.M., Williams, E.G. and Rowan, K.S. 1985. Effect of brassinolide and other growth regulators on the germination and growth of pollen tubes of Prunus avium using a multiple hanging drop assay”. Aust. J. Plant Physiol., 12(2): 201–11.

View at Google Scholar

62.Ikekawa, N. and Akutsu, T. 1987. Culturing method for spinach using brassinosteroid as growth promoters. Jpn. Kokai Tokkyo Koho. JP 63,239,201 [88,239,201] [C.A. 111, 52465].

View at Google Scholar

63.Isci, B. and Gokbayrak, Z. 2015. Influence of brassinosteroids on fruit yield and quality of table grape ‘Alphonse Lavallee’. Vitis, 54: 17–19.

View at Google Scholar

64.Javid, M.G., Sorooshzadeh, A., Moradi, F., Modarres-Sanavy, S.A.M. and Allahdadi, I. 2011. The role of phytohormones in alleviating salt stress in crop plants. Aust. J. Crop Sci., 5: 726–734.

View at Google Scholar

65.Kagale, S., Divi, U.K., Krochko, J.E., Keller, W.A. and Krishna, P. 2007. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 225: 353–364.

View at Google Scholar

66.Kamuro, Y. and Takatsuto, S. 1999. Practical application of brassinosteroids in agricultural fields. In: Sakurai A, Yokota T, Clouse SD, editors. Brassinosteroids: steroidal plant hormones. Tokyo: Springer-Verlag, pp. 223–241.

View at Google Scholar

67.Kaplan, U. and Gokbayrak, Z. 2012. Effect of 22(S), 23(S)- homobrassinolide on adventitious root formation in grape rootstocks. S. Afr. J. Enol. Vitic., 33: 53–56.

View at Google Scholar

68.Kazakova, V.N., Karsunkina, N.P. and Sukhova, L.S. 1991. Effect of brassinolide and fusicoccin on potato productivity and tuber resistance to fungal diseases under storage. Izvestiia Timiryazevskoi se?skokhoziaistvennoi Akademii, 0: 82-88 [apud Biological, 94(8): 85021].

View at Google Scholar

69.Khripach, V., Zhabinskii, V., De, and Groot, A.D. 2000. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann. Bot., 29: 441– 447.

View at Google Scholar

70.Kim, B.H., Kim, S.Y. and Nam, K.H. 2012. Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol. Cells, 34: 539-548.

View at Google Scholar

71.Kim, S.K., Chang, S.C., Lee, E.J., Chung, W.S., Kim, Y.S., Hwang, S. and Lee, J.S. 2000. Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol., 123: 997–1004.

View at Google Scholar

72.Kim, T.W. and Wang, Z.Y. 2010. Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu. Rev. Plant Biol., 61: 681–704.

View at Google Scholar

73.Kim, T.W., Guan, S., Burlingame, A.L. and Wang, Z.Y. 2011. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol. Cell, 43: 561–571.

View at Google Scholar

74.Kim, T.W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J.X., Burlingame, A.L. and Wang, Z.Y. 2009. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol., 11: 1254–1260.

View at Google Scholar

75.Kitani, Y. 1994. Induction of parthenogenetic haploid plants with brassinolide. Jpn. J. Genet., 69: 35–39.

View at Google Scholar

76.Krishna, P. 2003. Brassinosteroid-mediated stress responses. J. Plant Growth Regul., 22: 289–297.

View at Google Scholar

77.Kumari, S. and Thakur, A. 2018. Effects of Brassinosteroids on Growth and Biochemical Responses of Apple Plants to Water Stress. Int. J. Pure App. Biosci., 6(6): 613-620.

View at Google Scholar

78.Lee, H.S., Kim, Y., Pham, G., Kim, J.W., Song, J.H., Lee, Y., Hwang, Y.S., Roux, S.J. and Kim, S.H. 2015. Brassinazole resistant 1 (BZR1)-dependent brassinosteroid signaling pathway leads to ectopic activation of quiescent cell division and suppresses columella stem cell differentiation. J. Exp. Bot., 66: 4835–4849.

View at Google Scholar

79.Legue, V., Rigal, A. and Bhalerao, R.P. 2014. Adventitious root formation in tree species: involvement of transcription factors. Physiol. Plant, 151: 192–198.

View at Google Scholar

80.Leubner-Metzger, G. 2003. Brassinosteroids Promote Seed Germination. In: Hayat S., Ahmad A. (eds) Brassinosteroids. Springer, Dordrecht.

View at Google Scholar

81.Li, J. and Chory, J. 1997. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 90: 929–938.

View at Google Scholar

82.Li, J., Li, Y., Chen, S. and An, L. 2010. Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J. Exp. Bot., 61: 4221–4230.

View at Google Scholar

83.Li, J., Nagpal, P., Vitart, V., McMorris, T.C. and Chory, J. 1996. A role for brassinosteroids in light-dependent development of Arabidopsis. Science, 272: 398–401.

View at Google Scholar

84.Li, L., Ye, H., Guo, H. and Yin, Y. 2010. Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. Proc. Natl. Acad. Sci. U.S.A. 107: 3918–3923.

View at Google Scholar

85.Li, T., Yun, Z., Wu, Q., Zhang, Z., Liu, S., Shi, X., Duan, X. and Jiang, Y. 2018. Proteomic profiling of 24-epibrassinolideinduced chilling tolerance in harvested banana fruit. J. Proteomics, 187: 1-12.

View at Google Scholar

86.Li, J., Nagpal, P., Vitart, V., McMorris, T.C. and Chory, J. 1996. A role for brassinosteroids in light-dependent development of Arabidopsis. Science, 272: 398–401.

View at Google Scholar

87.Li, B., Zhang, C., Cao, B., Qin, G., Wang, W. and Tian, S. 2012. Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids, 43: 2469–2480.

View at Google Scholar

88.Lima, J.V. and Lobato, A.K.S. 2017. Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiol. Mol. Biol. Plants, 23: 59-72.

View at Google Scholar

89.Liu, J., Gao, H., Wang, X., Zheng, Q., Wang, C., Wang, X. and Wang, Q. 2014. Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of saltstressed canola. Plant Biol., 16: 440–450.

View at Google Scholar

90.Liu, Q., Xi, Z., Gao, J., Meng, Y., Lin, S. and Zhang, Z. 2016. Effects of exogenous 24-epibrassinolide to control grey mould and maintain postharvest quality of table grapes. Int. J. Food Sci. Technol., 51: 1236–1243.

View at Google Scholar

91.Luan, L.Y., Zhang, Z.W., Xi, Z.M., Huo, S.S. and Ma, L.N. 2016. Brassinosteroids regulate anthocyanin biosynthesis in the ripening of grape berries. S. Afr. J. Enol. Vitic., 34: 196–203.

View at Google Scholar

92.Malabadi, R.B., Teixeira da Silva, J.A. and Mulgund, G.S. 2009. In-vitro shoot regeneration by culture of Liparis elliptica (Rees.) Lindl. Shoot tip derived transverse thin cell layers induced by 24-epi brassinolide. Int. J. Plant Dev. Biol., 3(1): 47-51.

View at Google Scholar

93.Mandava, B. and Wang, Y. 2016. Effect of brassinosteroids on cherry maturation firmness and fruit quality. Acta. Hortic., 1139: 451–458.

View at Google Scholar

94.Megbo, B.C. 2010. Brassinosteroids and Gibberellic Acid act synergistically to influence plant growth and development. Int. J.Sci. and Engg. Res., 1: 68-72.

View at Google Scholar

95.Mitchell, J.W., Mandava, N., Worley, J.F., Plimmer, J.R. and Smith, M.V. 1970. Brassins—a new family of plant hormones from rape pollen. Nature, 225: 1065–1066.

View at Google Scholar

96.Moiseev, A. 1998. Preparation Epin: water of life. Eureka, 68: 22–25.

View at Google Scholar

97.Mussig, C. 2005. Brassinosteroid-promoted growth. Plant Biol., 7: 110–117.

View at Google Scholar

98.Nakajima, N. and Toyama, S. 1995. Study on brassinosteroidenhanced sugar accumulation in cucumber epicotyls. Jpn. J. Crop Sci., 64: 616–621.

View at Google Scholar

99.Mora-Garcia, S., Vert, G., Yin, Y., Cano-Delgado, A., Cheong, H. and Chory, J. 2004. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev., 18: 448–460.

View at Google Scholar

100.Mostafa, L.Y. and Kotb, H.R.M. 2018. Effect of Brassinosteroids and Gibberellic acid on parthenocarpic fruit formation and fruit quality of Sugar Apple Annona squamosa. Midd. East J. Agri. Res., 7(4): 1341-1351.

View at Google Scholar

101.Mussig, C., Shin, G.H. and Altmann, T. 2003. Brassinosteroids promote root growth in Arabidopsis. Plant Physiol., 133: 1261–1271.

View at Google Scholar

102.Nakajima, N., Shida, A. and Toyama, S. 1996. Effects of brassinos- teroid on cell division and colony formation of Chinese cabbage mesophyll protoplasts. Jap. J. Crop Sci., 65: 114- 118.

View at Google Scholar

103.Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I. and Yoshida, S. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J., 33: 887–898.

View at Google Scholar

104.Nemhauser, J.L., Mockler, T.C. and Chory, J. 2004. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol., 2(9): E258.

View at Google Scholar

105.Nolan, T., Chen, J. and Yin, Y. 2017. Cross-talk of brassinosteroid signaling in controlling growth and stress responses. Biochem. J., 474: 2641–2661.

View at Google Scholar

106.Oh, M.H. and Clouse, S.D. 1998. Brassinolide affects the rate of cell division in isolated leaf protoplasts of Petunia hybrida. Plant Cell Rep., 17: 171-178.

View at Google Scholar

107.Ohnishi, T. 2018. Recent advances in brassinosteroid biosynthetic pathway: insight into novel brassinosteroid shortcut pathway. J. Pestic. Sci., 43(3): 159–167.

View at Google Scholar

108.Pacifici, E., Polverari, L. and Sabatini, S. 2015. Plant hormone cross-talk: the pivot of root growth. J. Exp. Bot., 66: 1113–1121.

View at Google Scholar

109.Padashetti, B.S., Angadi, S.G. and Pattepur, S. 2010. Effect of pre-harvest spray of growth regulators on growth, quality and yield of seedless grape genotypes. Asian J. Agric. Hortic. Res., 5(1): 218-221.

View at Google Scholar

110.Papadopoulou, E. and Grumet, R. 2005. Brassinosteroidinduced femaleness in cucumber and relationship to ethylene production. Hortic. Sci., 40: 1763–1767.

View at Google Scholar

111.Peng, J., Tang, X.D. and Feng, H.Y. 2004. Effects of brassinolide on the physiological properties of litchi pericarp (Litchi chinensis cv. Nuomoci). Sci. Hortic., 101: 4 07–416.

View at Google Scholar

112.Pereira-Netto, A.B., Cruz-Silva, C.T.A., Schaefer, S., Ramírez, J.A. and Galagovsky, L.R. 2006. Brassinosteroidstimulated branch elongation in the Marubakaido apple rootstock. Trees, 20: 286–291.

View at Google Scholar

113.Pereira-Netto, A.B., Schaefer, S., Galagovsky, L.R. and Ramirez, J.A. 2003. Brassinosteroid-Driven Modulation of Stem Elongation and Apical Dominance: Applications in Micropropagation. In: Hayat S., Ahmad A. (eds) Brassinosteroids. Springer, Dordrecht. https://DOI. org/10.1007/978-94-017-0948-4_6

View at Google Scholar

114.Pipattanawong, N., Fujishige, N., Yamane, K. and Ogata, R. 1996. Effects of brassinosteroid on vegetative and reproductive growth in two day-neutral strawberries. J. Jpn. Soc. Hortic. Sci., 65: 651–654.

View at Google Scholar

115.Pozo, L., Rivera, T., Noriega, C., Iglesias, M., Coll, F., Robaina, C., Velázquez, B., Rodríguez, O.L. and Rodríguez, M.E. 1994. Algunos resultadosen el cultivo de losfrutalesmediante la utilización de brasinoesteeroides o compuestosanálogos. Cult. Trop., 15: 79–92.

View at Google Scholar

116.Que, F., Wang, G.L., Xu, Z.S., Wang, F. and Xiong, A.S. 2017. Transcriptional regulation of brassinosteroid accumulation during carrot development and the potential role of brassinosteroids in petiole elongation. Front Plant Sci., 8: 1356.

View at Google Scholar

117.Rademacher, W. 2015. Plant growth regulators: backgrounds and uses in plant production. J. Plant Growth Regul., 34: 845-872.

View at Google Scholar

118.Rajan, R., Gaikwad, S.S., Gotur, M., Joshi, C.J. and Chavda, J.K. 2017. Effect of Post Shooting Bunch Spray of Chemicals on Bunch Characters and Yield of Banana (Musa paradisiaca L.) cv. Grand Naine. Int. J. Cur. Microb. Appl. Sci., 6(8): 2471-2475.

View at Google Scholar

119.Roddick, J.G., Rijnenberg, A.L. and Ikekawa, N. 1993. Developmental effects of 24-epibrassinolide in excised roots of tomato grown in vitro. Physiol. Plant, 87: 453–458.

View at Google Scholar

120.Roghabadi, M.A. and Pakkish, Z. 2014. Role of brassinosteroid on yield, fruit quality and post-harvest storage of ‘TakDanehe Mashhad’ sweet cherry (Prunus avium L.). Agric. Commun., 2: 49–56.

View at Google Scholar

121.Roth, U., Friebe, A. and Schnabl, H. 2000. Resistance Induction in Plants by a Brassinosteroid-Containing Extract of Lychnis viscaria L. Zeitschrift für Naturforschung C 55(7-8) DOI: 10.1515/znc-2000-7-813

View at Google Scholar

122.Saini, S., Sharma, I. and Patil, P.K. 2015. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and cross talks. Front Plant Sci., 6: 1–17.

View at Google Scholar

123.Sairam, R.K. 1994. Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress conditions of two wheat varieties. Plant Growth Regul., 14: 173-181.

View at Google Scholar

124.Santner, A., Irina, L., Calderon-Villalobos, A. and Estelle, M. 2009. Plant hormones are versatile chemical regulators of plant growth. Nature Chem. Biol., 5: 301-307.

View at Google Scholar

125.Sasaki, H. 2002. Brassinolide promotes adventitious shoot regeneration from cauliflower hypocotyl segments. Plant Cell Tiss. Org., 71: 111–116.

View at Google Scholar

126.Sathiyamoorthy, P. and Nakamura, S. 1990. In vitro root induction by 24-epibrassinolide on hypocotyl segments of soybean (Glycine max L.) Merr. Plant Growth Regul., 9: 73-76.

View at Google Scholar

127.Schlagnhaufer, C., Arteca, R.N. and Yopp, J.H. 1984. A brassinosteroid-cytokinin interaction on ethylene production by etiolated mung bean segments. Physiol. Plant, 60: 347–350.

View at Google Scholar

128.Sharma, P. and Bhardwaj, R. 2007. Effects of 24-Epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress”. Acta Physiologiae Plantarum, 29(3): 259–263.

View at Google Scholar

129.Sharma, P., Bhardwaj, R., Arora, H.K., Arora, N. and Kumar, A. 2008. Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biol. Plant, 52(4): 767–770.

View at Google Scholar

130.Singh, S., Singh, I.S. and Singh, D.N. 1993. Physicochemical changes during development of seedless grapes (Vitis vinifera L.). Orissa J. Hort., 21: 43-46.

View at Google Scholar

131.Sirhindi, S. 2013. Brassinosteroids: Biosynthesis and Role in Growth, Development and Thermotolerance Responses. In: Molecular Stress Physiology of Plants. Eds. Rout GR and Das AB. Springer India, pp. 309-329.

View at Google Scholar

132.Sondhi, N., Bhardwaj, R., Kaur, S., Singh, B. and Kumar, N. 2008. Isolation of 24-epibrassinolide from leaves of “Aegle marmelos” and evaluation of its antigenotoxicity potential employing Allium cepa chromosomal aberration assay. Plant Growth Regul., 54(3): 217–224.

View at Google Scholar

133.Song, Y.L., Dong, Y.J., Tian, X.Y., Kong, J., Bai, X.Y., Xu, L.L. and He, Z.L. 2016. Role of foliar application of 24-epibrassinolide in response of peanut seedlings to iron deficiency. Biol. Plant, 60: 1–14.

View at Google Scholar

134.Steber, C.M. and McCourt, P. 2001. A role for brassinosteroids in germination in Arabidopsis. Plant Physiol., 125: 763-769.

View at Google Scholar

135.Sticher, L., Mauch-Mani, B. and Metraux, J.P. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol., 35: 235–370.

View at Google Scholar

136.Sugiyama, K. and Kuraishi, S. 1989. Stimulation of fruit set of’ ‘Morita’ Navel orange with brassinolide. Acta Hortic., 239: 345–348.

View at Google Scholar

137.Sutton, M.K., Vincet, C., Alferez, F.M. and Vashith, T. 2020. Brassinosteroid to Improve Growth and Productivity of Huanglongbing-Affected Sweet Orange. August 10-13, Virtual Conference, ASHS 2020.

View at Google Scholar

138.Suzuki, A., Murakami, Y. and Maotani, T. 1988. Physiological studies on physiological fruit drop of persimmon, Diospyros kaki Thunb, 4: effect of fruit growth on physiological fruit drop of persimmon. Bull. Fruit Tree Res. Stn. A. (Jpn.), 15: 41–50.

View at Google Scholar

139.Swamy, K.N. and Rao, S.S.R. 2006. Influence of brassinosteroids on rooting and growth of geranium (Pelargonium sp.) stem cuttings. Asian J. Plant Sci., 5: 619–622.

View at Google Scholar

140.Symons, G.M., Davies, C., Shavrukov, Y., Dry, I.B., Reid, J.B. and Thomas, M.R. 2006. Grapes on steroids. Brassinosteroid are involved in grape berry ripening. Plant Physiol., 140(1): 150-158.

View at Google Scholar

141.Symons, G.M., Davies, C., Shavrukov, Y., Dry, I.B., Reid, J.B. and Thomas, M.R. 2006. Grapes on steroids: brassinosteroids are involved in grape berry ripening. Plant Physiol., 140: 150–158.

View at Google Scholar

142.Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., Rédei, G.P., Nagy, F., Schell, J. and Koncz, C. 1996. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85: 171–182.

View at Google Scholar

143.Takematsu, T. and Izumi, K. 1985. Acceleration of plant growth in cultured soil. Jpn. Kokai Tokkyo Koho JP 62 04,205 [87 04,205] [C.A. 107, 72876]

View at Google Scholar

144.Talaat, N.B. 2013. 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta. Physiol. Plant, 35: 729–740.

View at Google Scholar

145.Tang, W., Kim, T.W., Oses-Prieto, J.A., Sun, Y., Deng, Z., Zhu, S., Wang, R., Burlingame, A.L. and Wang, Z.Y. 2008. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science, 321: 557–560.

View at Google Scholar

146.Tunc-Ozdemir, M. and Jones, A.M. 2017. BRL3 and AtRGS1 cooperate to fine tune growth inhibition and ROS activation. PLoS One, 12: e0177400.

View at Google Scholar

147.Upreti, K.K. and Murti, G.S.R. 2004. Effects of brassmosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biol. Plant, 48: 407–411.

View at Google Scholar

148.Vandenbussche, F., Suslov, D., De Grauwe, L., Leroux, O., Vissenberg, K. and Van Der Straeten, D. 2011. The Role of Brassinosteroids in Shoot Gravitropism. Plant Physiol., 156: 1331-1336.

View at Google Scholar

149.Vardhini, B.V., Sujatha, E. and Anuradha, S. 2002. Brassinosteroids—a new class of phytohormones. Curr. Sci., 82: 1239–1245.

View at Google Scholar

150.Verma, A., Malik, C.P. and Gupta, V.K. 2011. In Vitro Effects of Brassinosteroids on the Growth and Antioxidant Enzyme Activities in Groundnut. ISRN Agronomy. 2012: 1-8.

View at Google Scholar

151.Vidyavadhini, B. and Rao, S.R. 1996. Effect of brassinosteroids on germination of groundnut (Arachis hypogaea l.) seeds. Indian J. Plant Physiol., 1(3): 223-224.

View at Google Scholar

152.Wang, B. and Zeng, G. 1993. Effect of epibrassinolide on the resistance of rice seedlings to chilling injury. Zhiwu Shengli Xuebao, 19: 53–60.

View at Google Scholar

153.Wang, C.F., You, Y., Chen, F.L.X., Wang, J. and Wang, J.S. 2004. Adjusting effect of brassinolide and GA4 on the orange growth. Acta Agriculturae Jiangxiensis Universitatis., 5 – 22.

View at Google Scholar

154.Wang, C.F., You, Y., Chen, F.X.S., Wang, J. and Wang, J.S. 2004. Adjusting effect of brassinolide and GA (4) on the orange growth. Acta Agric Univ Jiangxiensis, 26: 759–762.

View at Google Scholar

155.Wang, H., Yang, C., Zhang, C., Wang, N., Lu, D., Wang, J., Zhang, S., Wang, Z.X., Ma, H. and Wang, X. 2011. Dual role of BKI1 and 14-3-3s in brassinosteroid signaling to link receptor with transcription factors. Dev. Cell, 21: 825–834.

View at Google Scholar

156.Watanabe, T., Noguchi, T., Kuriyama, H., Kadota, M., Takatsuto, S. and Kamuro, Y. 1997. Effects of brassinosteroid compound [TS303] on fruitsetting, fruit-growth taking roots and cold-resistance. Acta Hortic., 436: 267–270.

View at Google Scholar

157.Wei, Z. and Li, J. 2016. Brassinosteroids regulate root growth, development and symbiosis. Mol. Plant, 9: 86–100.

View at Google Scholar

158.Xi, Z., Zhang, Z., Huo, S., Luan, L., Gao, X., Ma, L. and Fang, Y. 2013. Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chem., 141: 3056–3065.

View at Google Scholar

159.Xia, X.J., Wang, Y.J., Zhou, Y.H., Tao, Y., Mao, W.H., Shi, K., Asami, T., Chen, Z. and Yu, J.Q. 2009. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol., 150: 801–814.

View at Google Scholar

160.Xia, X.J., Zhang, Y., Wu, J.X., Wang, J.T., Zhou, Y.H., Shi, K., Yu, Y.L. and Yu, J.Q. 2009a. Brassinosteroids promote metabolism of pesticides in cucumber. J. Agri. Food Chem., 57(18): 8406–8413.

View at Google Scholar

161.Xu, F., Gao, X., Xi, Z. and Zhang, H. et al. 2015. Application of exogenous 24-epibrassinolide enhances proanthocyanidin biosynthesis in Vitis vinifera ‘Cabernet Sauvignon’ berry skin. Plant Growth Regul., 75: 741–750.

View at Google Scholar

162.Ye, H., Liu, S., Tang, B., Chen, J., Xie, Z., Nolan, T.M., Jiang, H., Guo, H., Lin, H.Y., Li, L., Wang, Y., Tong, H., Zhang, M., Chu, C., Li, Z., Aluru, M., Aluru, S., Schnable, P.S. and Yin, Y. 2017. RD26 mediates crosstalk between drought and brassinosteroid signaling pathways. Nat. Commun., 8: 14573.

View at Google Scholar

163.Yin, Y., Wang, Z.Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T. and Chory, J. 2002. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 109: 181–191.

View at Google Scholar

164.Yoshida, T., Mogami, J. and Yamaguchi-Shinozaki, K. 2014. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr. Opin. Plant Biol., 21: 133-139..

View at Google Scholar

165.Yoshiok, T., Nesumi, H. and Ito, Y. 1990. Ibid., 59: 44–45.

View at Google Scholar

166.Yoshizumi, T., Nagata, N., Shimada, H. and Matsui, M. 1999. An Arabidopsis cell cycle-dependent kinase-related gene, CDC2b, plays a role in regulating seedling growth in darkness. Plant Cell, 11: 1883-1895.

View at Google Scholar

167.Yu, J., Fleming, S.L., Williams, B., Williams, E.V., Li, Z., Somma, P., Rieder, C.L. and Goldberg, M.L. 2004. Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila. J. Cell Biol., 164(4): 487-492.

View at Google Scholar

168.Yu, X., Li, L. and Li, L. 2008. Modulation of brassinosteroidregulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc. Natl. Acad. Sci. USA, 105: 7618–7623.

View at Google Scholar

169.Yuang, G., Jia, C., Li, Z. and Sun, B. 2010. Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Scientia Horticulturae, 126(2): 103-108.

View at Google Scholar

170.Zaharah, S.S., Singh, Z., Symons, G.M. and Reid, J.B. 2012. Role of brassinosteroids, ethylene, abscisic acid and indole-3- acetic acid in mango fruit ripening. J. Plant Growth Regul., 31:363–372

View at Google Scholar

171.Zhao, Y-J., Xu, R-J. and Luo, W-H. 1990. Inhibitory effects of abscisic acid on epibrassinolide-induced senescence of detached cotyledons in cucumber seedlings. Chin. Sci. Bull., 35: 928–31.

View at Google Scholar

172.Zhu, T., Peng, X.J., Xi, D.H., Guo, H., Yin, Y., Zhang, D.W. and Lin, H.H. 2016. Role of brassinosteroid signaling in modulating tobacco mosaic virus resistance in Nicotiana benthamiana. Sci. Rep., 6: 205–209.

View at Google Scholar

173.Zhu, Y., Wang, B., Tang, K., Hsu, C.C., Xie, S., Du, H., Yang, Y., Tao, W.A. and Zhu, J.K. 2017. An Arabidopsis Nucleoporin NUP85 modulates plant responses to ABA and salt stress. PLoS Genet., 13: e1007124.

View at Google Scholar

174.Zhu, Z., Zhang, Z., Qin, G. and Tian, S. 2010. Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biol. Technol., 56: 50–55.

View at Google Scholar

175.Zou, L.J., Deng, X.G., Zhang, L.E., Zhu, T., Tan, W.R., Muhammad, A., Zhu, L.J., Zhang, C., Zhang, D.W. and Lin, H.H. 2018. Nitric oxide as a signaling molecule in brassinosteroid-mediated virus resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiol. Plant, 163: 196-210.

View at Google Scholar

176.Zurek, D.M., Rayle, D.L., McMorris, T.C. and Clouse, S.D. 1994. Investigation of gene expression, growth kinetics and wall extensibility during brassinosteroid~regulated stem elongation. Plant Physio., 1104: 503-513.

View at Google Scholar

International Journal of Agriculture Environment & Biotechnology(IJAEB)| In Association with AAEB

27179958 - Visitors since February 20, 2019